
DataFlex to New Heights

Using Managed Connections

Stephen W. Meeley

Background

The SQL Style of Accessing Data

You connect to a server and database (connect = login)

Using that connection, you access tables within the
database

When finished you log out of the server

The server contains the meta-data for the database and
its tables

Portability is achieved by logging into a different
server/databases that have similar tables

The DataFlex Style of Accessing Data

A Filelist stores the locations of all tables

Each table is opened before using it

Tables are accessed and updated

Upon completion tables are closed

The meta-data for the table is stored in the table itself

Portability is achieved via relative names in the Filelist,
changing Filelists and copying files

Developers took great advantage of this portability

Connectivity – Bridging the Difference

An intermediate file (INT file) is defined for each table
The INT file contained two kinds of information

Server/database connection information for each table
Table meta-data that is not provided by the SQL Server (special column
information, index information, relationship information)

Filelist points to this INT file
When a table is “opened”

It reads the INT file
It logs into the database server (if needed)
It reads the table meta-data from the database and augments this with
information from the INT file

While this worked it made it difficult to maintain portable, deployable
databases (any change required changing or replacing all of the INT files)

Connection IDs

Connection Ids were created resolve some of these limitations

The Table’s connection information was no longer stored
directly in each table’s INT file

Instead it contained an ID that pointed to a server that is
defined elsewhere

Instead of changing connections in each table INT file you
changed it in one central location

The connection server information was stored either
in the driver INT file
or you wrote the code to do it yourself

A Table INT Connection Strings and IDs

A table INT file with connection string

DRIVER_NAME MSSQLDRV

SERVER_NAME SERVER=.\SQLEXPRESS;Trusted_Connection=yes;DATABASE=Chinook

DATABASE_NAME Album

SCHEMA_NAME dbo

A table INT file with a connection ID

DRIVER_NAME MSSQLDRV

SERVER_NAME DFCONNID=Chinook

DATABASE_NAME Album

SCHEMA_NAME dbo

Connection ID Limitations

Where do you define the Connection strings?
The driver ini file was too global and too hard to manage
The “write your own code approach” was too difficult

It still used the bottom up table open approach instead of the top down
server/database access table approach

None of our tools used it

Developers came up with ways to work around this, but it was not easy

Connections IDs were the right idea, they just didn't go far enough

Introducing Managed Connections

Introducing Managed Connections

Connection information is stored at the workspace level in a configuration file
The solution is workspace centric
The file is a simple ini file
Normally stored in data\dfconnid.ini

Here the full connection string and credential information is defined in dfconnid.ini

[connection1]
id=Chinook
driver=MSSQLDRV
connection=SERVER=.\SQLEXPRESS;DATABASE=Chinook
trusted_connection=yes

The Connection ID is then used in table INT files…

DRIVER_NAME MSSQLDRV
SERVER_NAME DFCONNID=Chinook
DATABASE_NAME Album
SCHEMA_NAME dbo

Managed Connections build on existing Connection ID concepts; think of this like “Connection IDs 2.0”

Managed Connections

This encourages and even enforces top down access (Login on
to server/database then "open" and access tables)
A single config file can define connections to:

multiple servers
alternative servers

Password credentials are automatically and uniquely
encrypted in the connection file
It can be used with embedded SQL
If provides the basis for switching connections dynamically
It's very extendable
It's remarkably backwards compatible

Studio and Managed Connections

We provide high level tools to configure manage the
entire process

The Studio, tools and Wizards allow you to add and manage the
connections

It’s easy to create tables using managed connections
It’s also easy to switch existing SQL table definitions to use
managed connections

You will see these tools in action

Applications and Managed Connections

The access logic is code based
• Access to this configuration file is handled through a single cConnection object
• Your applications and our tools, use the same cConnection API
• It requires very little code to implement in your application

Code required to support managed connections in application

Object oApplication is a cApplication

Object oConnection is a cConnection
Use LoginEncryption.pkg
Use DatabaseLoginDialog.dg

End_Object

End_Object

cConnection Class

Managed connections are implemented via the cConnection class.

The cConnection class will handle all connections for DataFlex CLI
drivers (6.2 and higher)

cConnection is a class that creates a single, global object that allows
you to

Create and maintain Connection IDs
Use Connection IDs in your table INT files
Define connections IDs in a workspace connections .ini file
Login to database servers via Connection IDs
Make ESQL connections to servers via Connection IDs

Using Managed Connections

Let’s see this in action…

Supporting Additional Connections

Supporting Additional Connections

You can define more than one connection in the connections .ini file
Alternate connections
Multiple connections

Alternate connections are defined when you wish to run an
application using an alternate server

The IDs will be the same but only one will be enabled

Multiple connections are defined when your application needs to
open tables from multiple servers

Each server will have it’s own ID

Let’s see this in action…

A Connection with Alternate Connections

[connection1]

Id=ID1

driver=MSSQLDRV

connection=SERVER=.\SQLEXPRESS;DATABASE=Order

trusted_connection=yes

disabled=yes

[connection2]

Id=ID1

driver=MSSQLDRV

connection=SERVER=.\SQLEXPRESS;DATABASE=Order_Demo

trusted_connection=yes

A Connection with Multiple Connections

[connection1]

Id=ID1

driver=MSSQLDRV

connection=SERVER=.\SQLEXPRESS;DATABASE=Order

trusted_connection=yes

[connection2]

Id=RS1

driver=MSSQLDRV

connection=SERVER=MyRemoteServer;DATABASE=RemoteData

UID=AppUser

PWD=893753hskfgd

Encryption and Database Logins

Encryption and Database Logins

An application needs to login into a database server.
Usually this occurs when the application is started

is required – if login fails, the application should not be run

is silent - it does not require user interaction

uses credential information stored with the application’s configuration
data (dfconnid.ini file)

The stored credential information must be secure

Note: this is not a user login - this occurs before a user login

Managed Connections handles all of this

Storing Login Credentials

Storing encrypted passwords creates some challenges
This must be supported both for your applications and in our tools

The Application encryption method should be fully customizable and
only known by the developer
The Tool encryption method is controlled and only known by us

We solve this by storing two password encryptions
PWD – this stores the application password encrypted using a
method known only to the application developer
DFPWD – this stores our Studio (and tools) password encrypted
using a method know only to us

The Connections .ini File

A connection with user id / password information

[connection1]

id=Chinook

driver=MSSQLDRV

connection=SERVER=.\SQLEXPRESS;DATABASE=Chinook

UID=AppUser

PWD=8973753hskfjd

DFPWD=sdfj876jdk

The Database Login Tool

A tool is required to configure the credential information.
That tool is a database login dialog that

is only invoked when needed
accepts input to perform the login
stores the successful credentials
uses the applications encryptions rules to store passwords

We provide you that tool
It uses a workspace unique random key to seed the encryption and
it can be further customized by the developer
can be embedded in your windows application or used standalone

Our applications (Studio, etc.) uses a similar tool and
technique

Encryption and Login Object Packages

Your application contains code in two object packages that manage encryption and
logging in. The standard packages are

Object oApplication is a cApplication

Object oConnection is a cConnection
Use LoginEncryption.pkg
Use DatabaseLoginDialog.dg

End_Object

End_Object

You can replace these with your own custom packages using ours as your template.

Dynamic Connections

Dynamic connections

cConnection makes it possible to change database servers and
databases dynamically
Applications can select their connection upon startup
Applications can change their database within a server, while
running

DF_DATABASE_DEFAULT_DATABASE

Applications can redirect their server/database connections at
runtime

RedirectConnectionID

Paves the way for multi-tenant applications
This will be particularly useful for web applications

Summary

Managed Connections Summary

It's a better fit with SQL client-server databases

It makes your applications behave more sensibly

During development it’s easy to work with multiple copies of databases

It makes it easier to deploy to database servers - only one file changes

It makes it easier to exchange workspaces with SQL data

A single config file can define connections to multiple servers

A single config file can define connections to alternative servers

Password credentials are automatically and uniquely encrypted in the connection file

It can be used with embedded SQL

It's very extendable

Adding code to existing applications to use managed connections is really easy

DataFlex to New Heights

Thank you!

Are there any questions?

