
DataFlex to New Heights

Skipping Windows

Marco Kuipers – 28 IT



Skipping Windows!
Imagine modernising a 30-year-old, 1000+ screen ERP from DataFlex 

3.1d to 19.0 Web Touch/Mobile. Building tools, automate testing, 
manage customer expectations and scope creep. 

Opportunities & Lessons Learned.

Marco Kuipers
Marco@28it.com.au



Skipping windows – Modernising software

AGENDA

Why would you care about Character Mode customers?

Windows, Web Desktop or Web Touch Application style

The great things of Mobile Web

Tips & Tricks



Skipping windows – modernising software



Common reasons not to modernise

Too expensive

Developer retired

It is running fine



Discuss with the customer the dilemma

Affordability: Is it ever going to become cheaper?

Availability: Will one day more developers be available that understand 
old style DataFlex code?

Continuity: What would happen to your business when the software stops 
working?

Value: If you want to sell your business, what is it worth when its software 
system is in its current state?

Growth: Can you attract and keep your staff with these systems into the 
future



Trendlines CIO, 

Mar/Apr 2014

Pg. 62-63

Majority of large 
organisations still 
using green screens.

34% of CIO’s say, 
working with these 
legacy applications 
impact on end-user 
retention and 
recruitment. 



Only one way forward… Modernising

Encourage the customer to reinvest in the software that has 
supported and grown their business in the last 20 to 30 
years and modernise the software so its core functionality 
will last another 20 to 30 years.

Consider separation of core functionality and peripheral

Allow the customer to continue to stand out from their 
competitors. You can’t stand out with off the shelf 
software...



Once modernised the customer can

Grow, Continue to build the system processes around your business 
processes, not the other way around.

Access Use modern interfaces, such as tablets and smartphones as 
well as the trusty PC

Uptime Your data would be freed from maintenance such as 
downtime for reindexing and backup issues

Optimise Modifying processes, screens and reports will become 
simple once again

Extend Build interfaces to customers and suppliers incl. hybrid 
blockchain solutions.

Unlock Any modern developer or student can self teach DataFlex and 
maintain your system ONCE MODERNISED.

The skill of modernising is:
Knowing the New & 
thoroughly understand the old



Modernise to what?

CharMode to Windows, Web Desktop or Web Touch?

Embedded Database, keep or migrate to SQL?

Per module or whole-of-system

Affordable refactoring (Reuse as much as possible, 
consider concessions you would not make for new build 
e.g. DD & connected grids vs offline grids & EOD run).



Why Web Touch?

It gives the customer a real leap, and ensures the 
longevity of the new system. Windows is current but web 
and especially touch is future.

The amount of information on the screen is similar to the 
Character Mode 80x24 screen. 

The Drill down interface is akin to the Chain wait user 
experience



How to quote?

This must be a paid quote

You must have the source code

Build a code analyser 

Clearly specify what you perceive IN scope and OUT scope 

Pretty diagrams gives confidence 

Use Sture’s DFMatrix



Project definition report

For this report I Charged 45 hours 
(up front).
In the report provide and estimation, 
proposed timeline.
In this report, I worked on 50 (2.3 
style) code lines per hour and 
timeline based on one day a week.
The one day a week is good for both 
parties. For me it allows me to 
schedule in parallel to other clients, 
for the customer so they can keep up 
with testing.



One of the 24 menu’s



Getting the job

Hopefully you get the job, but even if they are initially 
shocked, you have given them a path.

Conversations will start and the business at least has a 
(renewed) relationship with a trusted partner that 
genuinely wants the best for their business.

The report – because its paid separately and upfront - will 
allow them to get any other quotes if they like.

Most likely they want to build on the relationship.



Starting the build

Build the test server, with an automatic daily download of 
production data (4am).
Build a transform that applies any datafixes, new tables, extra 
fields, fixed field types in relationships etc. that runs direct 
after the daily download.
Frequent drops - communicate any drop clearly via email 
Monthly status reports on where you were planned to be and 
where we are, including any reasons for changes.
I started on 27 old lines per hour, as a lot of the infrastructure 
and foundation had to be build, but am now tracking on 68 
lines per hour (avg 45.5 since start). I'm on 73%



Code control

Use git version control, and commit often

Re-indent the OLD code (Use the Hammer) (also source 
control the old system)

Use regular expressions to convert code quick and 
reliable.

It might look difficult but it really is not and saves you so much 
time (use Notepad++ for replace)
Remove end of line comments with just initials and dates.
Trim the source code
Build own library



Build own Tools & keyboard macro’s

Build tools for any repetitive task like

Extract / compare data

Convert Report Images to Report Coordinates / code

Use a tool like AutoHotKey for

Lining up ‘to’

Append line to clipboard

Convert Excel data to RDS data

Use Web DD Debug Inspector



Menu to Zoom or Select

Web Mobile Framework, suggests to start with a list 
(select) then do New or Select to the zoom.

If the user 99% of the chance knows what the key is (they 
are holding the order form in their hands). Provide a zoom 
with prompt. This is more Desktop style.



Data Dictionaries

Specify in Data Dictionaries 

Capslock, Required, Commit, status help

Field masks to Date, Currency

Validate_DEOs_Only_State can help you out, for invalid 
not-on-screen validation issues of existing old records)

Labels, Although just for default psLabel

Field defaults & Validations

Combo box values (Description validation tables



DD Field value check (for combobox)
// 3.x style

Entry USER.DEPT {CHECK="IT|HR"}

// Windows style but not (yet?) supported with Javascript in Web Mobile

Set Field_Value_Check Field USER.DEPT to "IT|HR“

// Best for Web Mobile

Object oUserDept_VT is a ValidationTable

Procedure Fill_List

Forward Send Fill_List

Send Add_Table_Value "IT"

Send Add_Table_Value "HR"

End_Procedure

End_Object

Set Field_Value_Table Field USER.DEPT to oUserDept_VT

Set Field_Class_Name Field USER.DEPT to "dbComboForm"



DD Update/Backout – Modernisation Trap

Realtime vs Batch
The old system was used to end of day processing that run for 
hours. E.g. all customer outstanding’s were recalculated based 
on the new, updated and invoiced orders.

Customer expectation like-for-like
For now, we kept this, as thus is what they are used to. But the 
end of day is now scheduled and runs within a couple of 
minutes. Changing would arguably be scope creep.

Totals could become DD, or SQL views
When the customer decides on real-time dashboards / reports, 
this decision will be made.



Multi row entry (grids)

DAW: Not recommended in Mobile Touch

In Character mode, programmers when to great length 
wrestling with WindowIndex to get multi line entry to 
work.

My customer is not often going to do multi line entry on a 
phone but will on touch screen desktops (not far away 
now) and tablets with keyboards.

As like-for-like conversion means that the user can enter 
many rows, before they do a save: use non DataBound
grids with saving on button press /navigation.



Reporting

Reporting in CM, was Matrix printers, Carbon paper, continuous tractor feed paper, 
and lots of physical report, and copy invoice paper storage.

The new world is pdf.

All reports are created using DataFlex reports or Vpe, to pdf and stored on the server. 
A catalogue entry is created for each print job with:

Report name
Run date & time
Login name
Filename
NamedValues
Key (The key field is optional and the only value that is not automatically generated by 
(my) printing framework. The key I use for e.g. reprinting the last invoice.)

Users with the rights for Own or All print jobs, can pickup any previous Print job and 
re-look at, when talking with the customer or reprint when required. We have looked 
into PDF stamping ‘Duplicate’ but decided as not required for golive date. 



Like – for – like Testing

The customer expects a like-for-like system, while
Temp tables to arrays of structs

Multi row images and enter macro’s to cWebGrids.

Parallel run any processes, then export all modified tables 
to csv (create a dump tool)

Use Beyond compare to find/view & explain/fix 
differences.



User navigation logging

Build class that saves any user navigation into the table. 
This gives confidence that programs are being tested, at 
build/test stage, as well as assists support during the 
rollout stage and auditing when required 
(cNavigationLogger).



Scope creep

Stick to the original project definition report

Or invoice separately



Demo

Show Login 

Barcode scanner own menu

Grid entry

Amcharts (lib by Raphael Theiler) is great, but scope creep

Autohotkey

Show images to positions tool 



Tips and Tricks (1/2)

Clear table after any coded find (onValidation)

OnLoad vs onShow (e.g. aged trial balance)

Reporting; Separate data collection from reporting (RDS) 
or Array of Structs

Much easier for testing

Easier to debug / allows for data dump/load for remote issues

Existing DF formatting functions

Simple to switch between Embedded & SQL

Fast, no odbc and path issues



Tips and Tricks (2/2)

Domain login - https://tinyurl.com/dfsso28

URL parameter for Barcode scanner device

Email popup for invoices, purchase orders etc.

Report archive (Rights restricted)

Navigation log (demo)

https://tinyurl.com/dfsso28


What would I do different?

Build universal DD update tool
Detects Decimal xxxxx.xx fields, and generates the currency 
mask logic in DD

Detects entry {check=“ABC”} and generates validation table/ 
combo logic

Detects uppercase (as {CAPSLOCK} or ASCII columns in tables 
where random 1000 records are all uppercase

Learn Regular Expressions earlier
Huge timesaver in refactoring



Conclusions

Web Mobile Touch is a mature framework

The navigation is very compatible with the old Chain Wait

Encourage CM users, to skip windows and modernise now

Touch on tablets, Laptops and soon Desktops is the norm

Previous time consuming ‘Enter Macro to DD’ migrations 
are much easier now with:

DD Relationships

NavigateData struct

Web objects – DataBound or Manual 



DataFlex to New Heights

Thank you!

Are there any questions?

Marco@28it.com.au


