
DataFlex to New Heights

Introducing JSON in DataFlex

John Tuohy

JSON

JavaScript Object Notation

JSON is a lightweight data-interchange format.

JSON is a text format.

JSON is completely language independent.

JSON is based on a subset of JavaScript.

JSON is easy for humans tor read and write.

JSON is easy for machines parse and generate.

JSON is familiar to programmers of C-family languages like C++,
Java, Python, JavaScript.

3/9/2018Introduction to JSON in DataFlex by Harm Wibier

The JSON Format

Objects

Arrays

Strings

Booleans

Numbers

3/9/2018Introduction to JSON in DataFlex by Harm Wibier

{
"name" : "John",
"details" : {

"age" : 31,
"male" : true

},
"ratings" : [8, 7.5, 8, 5.5]

}

JSON XML

3/9/2018Introduction to JSON in DataFlex by Harm Wibier

<?xml version="1.0" encoding="UTF-8" ?>
<student>

<name>John</name>
<details>

<age>31</age>
<male>true</male>

</details>
<ratings>

<rate>8</rate>
<rate>7.5</rate>
<rate>8</rate>
<rate>5.5</rate>

</ratings>
</student>

{
"name" : "John",
"details" : {

"age" : 31,
"male" : true,

},
"ratings" : [

8,
7.5,
8,
5.5

]
}

Human readable

Hierachical

Quicker
Shorter

No end tags

Easier to parse
Can be evaluated in some
languges

Has arrays

Lighter and native to JavaScript

Human readable

Hierachical

Better standardized

More extensive

Attributes

Namespaces

XML Schema

XSL

XPath

Heavier but wider supported

JSON XML

Usage

3/9/2018Introduction to JSON in DataFlex by Harm Wibier

Interchange data

REST JSON API’s

JavaScript WebApps
Like the WebApp Framework

Store data

Serialize data from memory

JSON in DataFlex

Web Services
Built in JSON support

Every DataFlex Web-Service can be called using JSON

JSON parsing & generation happens in ISAPI handler

cJsonObject
Manually parse & generate JSON

Serialize / deserialize structs and arrays

cJsonHttpTransfer
Communicate with JSON Services

3/9/2018Introduction to JSON in DataFlex by Harm Wibier

http://localhost/WebOrder_19/CustomerAndOrderInfo.wso

http://localhost/WebOrder_19/CustomerAndOrderInfo.wso

http://localhost/WebOrder_19/CustomerAndOrderInfo.wso
http://localhost/WebOrder_19/CustomerAndOrderInfo.wso

cJsonObject

Parse JSON

Generate JSON

Manipulate JSON like a DOM structure

Convert DataFlex structs and arrays into JSON

Convert JSON into DataFlex structs and arrays

3/9/2018Introduction to JSON in DataFlex by Harm Wibier

Parsing Examples

3/9/2018Introduction to JSON in DataFlex by Harm Wibier

JSON <> Struct

3/9/2018Introduction to JSON in DataFlex by Harm Wibier

Struct tStudentDetail
Integer age
Boolean male

End_Struct

Struct tStudent
String name
tStudentDetail details
Number[] ratings

End_Struct

{
"name": "Troy Umstead",
"details": {
"age": 20,
"male": true

},
"ratings": [
2.3,
5.2,
4.0,
9.4

]
}

Structs with JSON

Parse JSON into Struct

Parse JSON using cJsonObject

Use JsonToDataType function
Fills a struct using JSON data

Serialize Struct to JSON

Use DataTypeToJson procedure
Generates JSON objects based on the struct data

Stringify into a JSON string

3/9/2018Introduction to JSON in DataFlex by Harm Wibier

Struct Examples

3/9/2018Introduction to JSON in DataFlex by Harm Wibier

API Overview

cJsonObject
ParseString, ParseUtf8

Parses a JSON string into the JSON DOM
Stringify, StringifyUtf8

Generates the JSON string from the JSON DOM
DataTypeToJson, JsonToDataType

Convert JSON DOM to structs / arrays
Member, MemberByIndex, MemberCount, MemberNameByIndex,
HasMember, JsonType

Traverse JSON DOM
AddMember, SetMember, SetMemberValue, InitializeJsonType

Manipulate JSON

2017/04/05Working with JSON by John Tuohy and Harm Wibier

ParseUtf8 and StringifyUtf8

UChar array as parameter / argument

No argument-size limitations

Supported by Read_Block, Write_Block, Set_Field_Value, Get_Field_Value,
Field_Current_UCAValue

Expected encoding is UTF-8

Default format when transmitting JSON object the web

Convert manually if needed

ConvertUCharArray
of cChartTranslate

3/9/2018Introduction to JSON in DataFlex by Harm Wibier

UChar[] uData

Direct_Input "FileWithJsonData.json"
Read_Block uData -1
Close_Input

Get Create (RefClass(cJsonObject)) to hoJsonDom
Get ParseUtf8 of hoJsonDom uData to bParsed

JSON and REST

The HTTP transfer protocol

Different types of HTTP requests use different to protocols
The most common are Post and Get
There are others such as Put, Delete and Patch - these are referred
to as verbs
The low level http interface actually has you send these verbs as:

GET, POST, PATCH, PUT, DELETE

Basically a request sends a verb and data with some header
information

Until early 2000s the HTTP verbs were considered low-level
arcane knowledge

DISD 2018

REST

Then REST and RESTful web-services were created

REST: Representational state transfer (REST)
or RESTful Web services are one way of providing
interoperability between computer systems on
the Internet. REST-compliant Web services allow requesting
systems to access and manipulate textual representations
of Web resources using a uniform and predefined set
of stateless operations. (Wikipedia)

DISD 2018

REST web services

REST uses three parts of an HTTP request to create web-service

Verb

URL

Data

Verb – the verb to define the operation

GET – used to retrieve data

DELETE – use to delete data

POST – Used to Create data

PUT – Used to Replace data

PATCH – is used to …. whatever

URL - It uses the URL to determine what the operation is acting on

//api.example.com/customers/

//api.example.com/customers/1

//api.example.com/customers/1/orders

Data – is passed and returned as HTTP data

DISD 2018

REST – web services (continued)

To make this all a bit more concrete:
REST uses the standard HTTP verbs and URLs to determine what to do

The data is exchanged as HTTP character data

REST often exchanges data in JSON

REST transfers the JSON data using UTF-8

The content of the data is whatever the service defines (and you need to figure this out)

SOAP web service vs. Rest web service
Not at all the same thing

DISD 2018

cJsonHttpTransfer class

Sub-class of cHttpTransfer
Used to transfer JSON data across requests
Passes and receives JSON objects, if invalid JSON data, it fails
Supports all RESTful verbs Get, Post, Put, Delete, Patch and "verb" just
in case

Get HttpGetJson
Get HttpPutJson
Get HttpPostJson
Get HttpPatchJson
Get HttpDeleteJson
Get HttpVerbJson

Uses UTF8 encoding
Used to transfer JSON via Http - you have to write the code yourself

DISD 2018

Using cJsonHttpTransfer objects

Object oJsonHttp is a cJsonHttpTransfer

End_Object

Get HttpGetJson of oJsonHttp "api.example.com" "customers" (&bOk) to hoJsonOut

Get HttpGetJson of oJsonHttp "api.example.com" "customers/1" (&bOk) to hoJsonOut

Get HttpGetJson of oJsonHttp "api.example.com" "customers/1/Orders" (&bOk) to hoJsonOut

Get HttpPostJson of oJsonHttp "api.example.com" "customers" hoJSONIn (&bOk) to hoJsonOut

Get HttpPatchJson of oJsonHttp "api.example.com" "customers/1" hoJSONIn (&bOk) to hoJsonOut

Get HttpDeleteJson of oJsonHttp "api.example.com" "customers/1" 0 (&bOk) to hoJsonOut

DISD 2018

Examples

For the samples we use:

http://jsonplaceholder.typicode.com

DISD 2018

http://jsonplaceholder.typicode.com/

DataFlex to New Heights

Thank you!

Are there any questions?

