
DataFlex to New Heights

We made the back button work!

Harm Wibier



How did we break it in the first place?



How the back button works..

Browser records navigation actions
Each page reload becomes a history item
Going back simply means loading the previous URL

Classic Web Applications rely on full page reloads
CustomerOverview.asp
Customer.asp?number=12
Order.asp?number=121

http://localhost/Order_Entry_17/CustomerReport.asp

http://localhost/Order_Entry_17/CustomerReport.asp


AJAX Applications

Rely less and less on page reloads
Refresh parts of the page with data loaded using AJAX Calls

Single page apps
Do not reload the page at all

Browsers do not record history at all

Do not support deep links

DataFlex WebApp Framework is such a single page app

http://localhost/WebOrderMobile_19/

http://localhost/WebOrderMobile_19/


How browsers solved this..

Modern browsers have JavaScript API’s for manually 
maintaining history

history.pushState
history.replaceState
popState event

History back & forward operations are handled in 
JavaScript as well

Used to make the back button ‘work’

Can change the displayed URL without page load



WebApp Framework

Exposed low level API’s

Standard URL generation
For both drill-down and desktop-style

Standard history management

http://localhost/WebOrderMobile_19_1/

http://localhost/WebOrderMobile_19_1/


Deep link URL support 

Turned out to be the key in the project
After we got that, the back button was easy

System that works automatically
Drill-down style 

Tightly integrated with drill-down model

…SalesPersons/Orders-CM/Order-2172

Desktop style
Easy

Modal dialogs are not part of the URL

…Inventory-BEARS

http://localhost/WebOrderMobile_19_1/Index.html#SalesPersons/Orders-CM/Order-2172/OrderLine-2172_2
http://localhost/WebOrder_19_1/#Inventory-BEARS


State Hash

String that represents the state of the application

Includes
View names (customizable by property)
Record ids (based on main index, defaults to primary key)
Custom data (implement event to add)

Per view
{viewname}-{recordid}-{custom}
Example: Product-BEARS

Drill-down
{view hash}/{view hash}
Inventory/Product-BEARS



Behavior

History represents history of user actions
Not tied to the breadcrumb

No data loss warnings when using the back button

Changes might get lost when navigating back

Changes are always lost when navigating forward

Desktop-style webapps do not refind the record when going 
back

Record-id is in the URL so you can copy-paste

Select views do not always reselect the same record (depends 
on the invoking view)



Drill-down navigation

Loading a deep link URL restores the entire navigation path
It goes through entire navigation process

View loading is optimized 

Invoking views are loaded asynchronously in the background

Navigation type is figured out based on the URL

Invoking objects can’t be figured out and need to be provided 
explicitly sometimes

OnGetDefaultInvokingObject (cWebView)

Navigation type determines which record ID is in the URL



Custom navigation

Generate custom state hash
OnDefineCustomStateHash

Fired each time URL is generated

Use custom hash inside OnNavigateForward
CustomStateHash

Returns the custom hash

Or exclude from the URL using peStateMode



Customization

Modes
Off
History only
URLs & History

Customize generated URLs
Change view names
Change record id generation
Add custom details

Choose between using the location hash (#..) and 
inclusion in the URL itself



Custom URLs without hash

Override URL generation logic
Override StateHashToUrl procedure and StateHash function

Use IIS URL Rewrite module to rewrite URL’s

Add <base element to the HTML fix relative includes

Configure session manager to write cookies at higher level

http://localhost:82/

http://localhost:82/


DataFlex to New Heights

Thank you!

Are there any questions?


