
Building for the future. Better, faster, everywhere.

Pieter Saelens

Henri Reterink

CUSTOM CONTROLS

Building for the future. Better, faster, everywhere.

Why a custom control?

 Generic reusable controls

o Graphs / Charts

o Scheduler

o HTML Editor (Froala)

o TimePicker

 More feature specific

o Procedural questionnaire

o Dynamically generated
dashboard

 Extra functionalities!

Building for the future. Better, faster, everywhere.

HTML Editor control example

cWebFroalaEditor

Building for the future. Better, faster, everywhere.

Timepicker example

cWebTimeForm

Building for the future. Better, faster, everywhere.

What is a custom control?

 DataFlex

o Server side portion

o A Class

o Provides API’s for the application
to work with

 JavaScript

o Client side portion

o Implements the wanted
feature using the framework
API’s

o Usually renders something on
screen

o A pseudo “Class” in javascript

 DataFlex component that you can add to a view.

 Usually something visible

JS

Building for the future. Better, faster, everywhere.

Knowledge required

 DataFlex classes and subclassing

 JavaScript

 HTML and DOM Manipulation

 WebApp Framework basics

To some extent...

 CSS

 Ajax

Building for the future. Better, faster, everywhere.

“Build a scheduler control for the DF Web Framework”

Case

Building for the future. Better, faster, everywhere.

Determining the initial set of requirements

 CRUD: Create, Read, Update and Delete events

 Easy to use, intuitive

 Relatively easy to implement in a variety of applications

 Accept event data in a fixed format, but from multiple sources

 Flexible and customizable

Building for the future. Better, faster, everywhere.

Build or wrap?

Building it ourselves

Pros

 Control over usage, look, etc.

 Possibly more DF “native”

Cons

 Having to build every single piece
ourselves

Wrapping an existing library

Pros

 No reinventing the wheel

 Can save a lot of time

Cons

 Limited control over usage, look, etc.

 No API standards

 Possible dependency on other
libraries like jQuery

Building for the future. Better, faster, everywhere.

Winner: DHTMLx Scheduler

 Clean, simple but effective look

 User friendly interaction with drag&drop
and in-calendar dialogs

 Very flexible

 Very customizable

 Well documented(!)

Cons:

 License for commercial products

Building for the future. Better, faster, everywhere.

Winner: DHTMLx Scheduler

Building for the future. Better, faster, everywhere.

Setting up…

Building for the future. Better, faster, everywhere.

At the DataFlex side…

 Create a package for our Class

 Extend from a WebApp Framework base class, common ones are

o cWebObject

o cWebBaseUIObject

o cWebBaseControl

Building for the future. Better, faster, everywhere.

…

 Define our JS class name

o This will have to match with the name defined in the JS file later

Class cWebDhxScheduler is a cWebBaseControl

Procedure Construct_Object
Forward Send Construct_Object

Set psJSClass to "dfhx.WebDhxScheduler"
End_Procedure

End_Class

Building for the future. Better, faster, everywhere.

…

 Configure super classes

Procedure Construct_Object
Forward Send Construct_Object

// Configure super classes
Set pbFillHeight to True
Set piColumnSpan to 0
Set pbShowLabel to False

Set psJSClass to "dfhx.WebDhxScheduler"
End_Procedure

Building for the future. Better, faster, everywhere.

At the JavaScript side…

 Create a .JS file

 Create a “namespace” object (optional)

 Create our constructor function

o Configure superclasses

// Create namespace object (dfhx = dataflex dhtmlx)
if(!dfhx){

var dfhx = {};
}

dfhx.WebDhxScheduler = function WebDhxScheduler(sName, oPrnt){
// Configure superclasses
dfhx.WebDhxScheduler.base.constructor.apply(this, arguments);

};

JS

Building for the future. Better, faster, everywhere.

…

 Define our class (matches with class defined in DF)

o Extend from a base class, common ones:

 df.WebObject

 df.WebBaseUIObject

 df.WebBaseControl

// Create namespace object (dfhx = dataflex dhtmlx)
if(!dfhx){

var dfhx = {};
}

dfhx.WebDhxScheduler = function WebDhxScheduler(sName, oPrnt){
// Configure superclasses
dfhx.WebDhxScheduler.base.constructor.apply(this, arguments);

};

df.defineClass("dfhx.WebDhxScheduler", "df.WebBaseControl", {

// Control functions and logic will go here

});

JS

Building for the future. Better, faster, everywhere.

WebProperties

 Can be used to store things like data, status information and settings for the control

 Property value is shared and maintained between Client and Server

 Engine generates default Get & Set functions in JS if no custom ones are defined

o Called when executing WebGet and WebSet functions in DF, and at several
other times

o Implement a custom setter method as set_psPropertyName

o Implement a custom getter method as get_psPropertyName

Building for the future. Better, faster, everywhere.

WebProperties

 Dataflex definition

 Our custom setter

 JavaScript definition

// Defines whether events can be dragged or not
{WebProperty = True}
Property Boolean pbAllowEventDrag

dfhx.WebDhxScheduler = function WebDhxScheduler(sName, oPrnt){
dfhx.WebDhxScheduler.base.constructor.apply(this, arguments);

// Define our property
this.prop(df.tBool, "pbAllowEventDrag", true);

};

set_pbAllowEventDrag : function(bVal){
if(this._eControl){

// DhxNoResize true tells the dHTMLx scheduler to not allow event dragging
// Calling "Set pbAllowEventDrag false" from DF would set DhxNoResize to true, and block event dragging
df.dom.toggleClass(this._eControl, "DhxNoResize", !bVal);

}
},

JS

JS

Building for the future. Better, faster, everywhere.

OpenHtml, CloseHtml and AfterRender

Displaying your control on screen

Building for the future. Better, faster, everywhere.

Rendering the control

 UI Objects render themselves on the client by generating HTML

 Recursive functions openHtml, closeHtml and afterRender are triggered

o openHtml and closeHtml are used to insert HTML elements into the document

o afterRender is called afterwards to perform DOM Manipulation

Creation

Object definitions are
sent to the client by
the server

Render

render()

• openHtml(aHtml)

• closeHtml(aHtml)

afterRender()

Building for the future. Better, faster, everywhere.

openHtml, closeHtml

 Our openHtml and closeHtml functions

o Create a container for our scheduler to fit in using HTML elements

o On initialization we’ll tell the dHTMLx Scheduler to render itself inside this
container

// Creates the HTML elements to "draw" for our control
openHtml : function(aHtml){

// "Forward send"
dfhx.WebDhxScheduler.base.openHtml.call(this, aHtml);

aHtml.push('<div class="dhx_cal_container" style="width:100%; height:100%;">');
aHtml.push(' <div class="dhx_cal_navline">');
aHtml.push(' <div class="dhx_cal_date"></div>');
aHtml.push(' </div>');
aHtml.push(' <div class="dhx_cal_header"></div>');
aHtml.push(' <div class="dhx_cal_data"></div>');
aHtml.push('</div>');

},

// Creates the HTML elements to "draw" for our control
// Called after all openHtml functions are done
closeHtml : function(aHtml){

// Just "Forward Send" for now
dfhx.WebDhxScheduler.base.closeHtml.call(this, aHtml);

},

JS

Building for the future. Better, faster, everywhere.

afterRender

 Our openHtml and closeHtml functions

o Create a container for our scheduler to fit in using HTML elements

o On initialization we’ll tell the dHTMLx Scheduler to render itself inside this
container

// Called after the control has been rendered on screen
afterRender : function(){

// Find our container, mark it as our control root
this._eControl = df.dom.query(this._eElem, ".dhx_cal_container");

// Forward send
dfhx.WebDhxScheduler.base.afterRender.apply(this, arguments);

// This function sets dHtmlx Scheduler properties and initializes it in our container
this.initScheduler();

// Can only call this setter after control is rendered
this.set_pbAllowEventDrag(this.pbAllowEventDrag);

},

JS

Building for the future. Better, faster, everywhere.

Building for the future. Better, faster, everywhere.

ServerActions and ClientActions

Making it do stuff

Building for the future. Better, faster, everywhere.

ServerActions

 Basically just DF procedures / functions

 Can be called by the JS Client by using:

o this.serverAction("MethodName", aParams);

 Optionally provide a return value

 Must be made available to the client by using

o WebPublishProcedure ProcedureName

o WebPublishFunction FunctionName

Building for the future. Better, faster, everywhere.

ServerAction to load events

 Our ServerAction, a DataFlex procedure

Procedure LoadEvents String sMode String sStartDate String sEndDate
tWebValueTree tVT
String[] aParams
Date dStart dEnd
// Event Array to be filled and sent to the client
tWebDhxEvent[] aEvents

Move (ConvertFromClient(typeDate, sStartDate)) to dStart
Move (ConvertFromClient(typeDate, sEndDate)) to dEnd

// Event hook, allows augmentation for application specific logic. Fill event array
Send OnLoadEvents (&aEvents) sMode dStart dEnd

// Serialize Event array to a WebValueTree
ValueTreeSerializeParameter aEvents to tVT

// Call clientaction to process data
Move sMode to aParams[0]
Move sStartDate to aParams[1]
Move sEndDate to aParams[2]

Send ClientAction "handleEvents" aParams tVT
End_Procedure

Building for the future. Better, faster, everywhere.

Event “hook”

 Event “hook” for our ServerAction

o Allows you to define the main universal logic yourself

o Developers can place application specific logic inside the event

o Shows up in Object Properties panel!

// Called by LoadEvents
{ MethodType=Event }
Procedure OnLoadEvents tWebDhxEvent[] ByRef aEvents String sMode Date dStart Date dEnd

// Augment this procedure with your own business logic to load events
End_Procedure

Building for the future. Better, faster, everywhere.

Exposing and calling our procedure

 Exposing our procedure to the client

Procedure End_Construct_Object
Forward Send End_Construct_Object

// Allows our "ServerAction" to be called from the JS Client
WebPublishProcedure LoadEvents

End_Procedure

 Calling our procedure from the client

loadData : function(sMode, dStart, dEnd){
// Calls the "LoadEvents" procedure on the server, with given parameters
this.serverAction("LoadEvents", [sMode, this.toSvrDate(dStart), this.toSvrDate(dEnd)], null, function(){

// Logic to be executed if the function / procedure has returned something
});

},

JS

Building for the future. Better, faster, everywhere.

ClientActions

 Functions in JavaScript

 Can be called by the DF Server by using

o Send ClientAction "methodName" aParams

o Send ClientAction "methodName" aParams tWebValueTree

 tWebValueTree is data serialized to a format the client and server can both read and
deserialize

 Work asynchronously

 Parameters are provided as Strings

Building for the future. Better, faster, everywhere.

Calling our ClientAction

 Calling our ClientAction “handleEvents” from the server

// Serialize data
ValueTreeSerializeParameter aEvents to tVT

// Call clientaction to process data
Move sMode to aParams[0]
Move sStartDate to aParams[1]
Move sEndDate to aParams[2]

Send ClientAction "handleEvents" aParams tVT
End_Procedure

Building for the future. Better, faster, everywhere.

Our ClientAction

 Our ClientAction, a function in JavaScript
// (De)serializers for data sent by and to the server
deserializeVT : df.sys.vt.generateDeserializer([dfhx.tWebDhxEvent]),
serializeVT : df.sys.vt.generateSerializer([dfhx.tWebDhxEvent]),

// ClientAction called by the server
handleEvents : function(sMode, sStart, sEnd){

// Deserialize received data
var i, aEvents = this.deserializeVT(this._tActionData);

if(this._oScheduler){
this._oScheduler.clearAll();

// Convert dates
for(i = 0; i < aEvents.length; i++){

aEvents[i].start_date = df.sys.data.stringToDate(aEvents[i].start_date, "yyyy/mm/ddThh:mm:ss.fff");
aEvents[i].end_date = df.sys.data.stringToDate(aEvents[i].end_date, "yyyy/mm/ddThh:mm:ss.fff");

}

// Pass to scheduler control
this._oScheduler.parse(aEvents, "json");

}
},

JS

Building for the future. Better, faster, everywhere.

Using your control in multiple projects

Building for the future. Better, faster, everywhere.

How to import your control

 Develop your control in a separate, standalone workspace

 In your application workspace...

o add the control workspace as a library

o copy the control .JS file to an AppHtml subfolder

o copy any other required files used by the control as well if needed

o add a reference to the required .JS files in your Index.html

 You can even add it to the class palette for convenience!

<!-- DHTMLX Scheduler -->
<script src="dhtmlx/dhtmlxscheduler.js" type="text/javascript"></script>
<script src="dhtmlx/ext/dhtmlxscheduler_limit.js"></script>
<script src="dhtmlx/ext/dhtmlxscheduler_units.js"></script>
<script src="dhtmlx/ext/dhtmlxscheduler_timeline.js"></script>
<script src="dhtmlx/ext/dhtmlxscheduler_multiselect.js"></script>
<script src="dhtmlx/ext/dhtmlxscheduler_tooltip.js"></script>
<!-- <link rel="stylesheet" href="dhtmlx/dhtmlxscheduler.css" type="text/css"> -->
<link rel="stylesheet" href="dhtmlx/dhtmlxscheduler_flat.css" type="text/css">

<!-- DataFlex Custom Controls (do not remove this line, used for automatic insertion) -->
<script src="Custom/WebDhxScheduler.js"></script>

Building for the future. Better, faster, everywhere.

Demo:

http://canesto.contentcalendar.eu/

Credentials:
U: demo
P: demo

Building for the future. Better, faster, everywhere.

There’s much more to learn!

 Some things we haven’t talked about include...

o Events in-depth

o Private client properties

o Synchronized WebProperties

o Serializing and deserializing data

o Etc.

 Want some examples? The default WebApp classes are right there!

o Take a look in the AppHtml/DfEngine of your webapp

o Study controls like the WebButton, WebForm, etc.

Building for the future. Better, faster, everywhere.

Thank you for your attention
Are there any questions?

