CUSTOM CONTROLS

Pieter Saelens
Henri Reterink

'l,.,r Fr“

Building for the future. Better, faster, everywhere. SY N E RGY

Why a custom control?

e Extra functionalities!

e Generic reusable controls e More feature specific
o Graphs / Charts o Procedural questionnaire
o Scheduler o Dynamically generated
o HTML Editor (Froala) dashboard
o TimePicker

Building for the future. Better, faster, everywhere. SYN E RGY

HTML Editor control example

Image selection

1 —

B> =-

i
4
i
iii
il

s B I U & A~ T~ & #~ 9~

T—

% [l H z:g] >

It's possible to add an image through an URL, but also using a pre defined selection of images. Try
adding an image now to see how it works. Click Insert Image button and then click Browse.

The images are loaded when the image container is opened. To seed the selection, use

"OnLoadlmages" procedure. This procedure will get called each time image manager is opened, st .

) & i P , P & g & P cWebFroalaEditor
it allows for a different collection for each user.

Procedure OnlLoadlmages
Send ManagerAddimage "Images/DF_Logo_Retina.png”
Send ManagerAddimage "Images/PoweredByDataFlex.png"
Send ManagerAddimage "https://i.froala.com/assets/photo3.jpg”
Send ManagerAddimage "https://ifroala.com/assets/photod.jpg”

Building for the future. Better, faster, everywhere. SYN E RGY

Timepicker example

Demo 3: no zero padding, interval of 5 for seconds and minutes

For seconds and minutes (can be set separately), the picker will move up or down in
intervals of 5. Editing the field will round up or down to the nearest 5

Labe

8:30:15 cWebTimeForm

> 8 : 30 : 15
T

ue is loaded from the DB. Editing and saving will

Building for the future. Better, faster, everywhere. SYN E RGY

What is a custom control?

e DataFlex component that you can add to a view.
e Usually something visible

E DataFlex
o Server side portion
o AClass
o Provides API's for the application
to work with

Building for the future. Better, faster, everywhere.

JavaScript

O

O

Client side portion

Implements the wanted
feature using the framework
API’s

Usually renders something on
screen

A pseudo “Class” in javascript

SYNERGY

Knowledge required

DataFlex classes and subclassing

JavaScript
HTML and DOM Manipulation
WebApp Framework basics

To some extent...
e (CSS
e Ajax

Building for the future. Better, faster, everywhere. SY N E RGY

Build a scheduler ¢

Building for the future. Better, faster, everywhere. SYN E RGY 2 O] 7

Determining the initial set of requirements

CRUD: Create, Read, Update and Delete events

Easy to use, intuitive

Relatively easy to implement in a variety of applications
Accept event data in a fixed format, but from multiple sources

Flexible and customizable

Building for the future. Better, faster, everywhere. SY N E RGY

Build or wrap?

Building it ourselves

Pros
e Control over usage, look, etc.
e Possibly more DF “native”

Cons
e Having to build every single piece
ourselves

Building for the future. Better, faster, everywhere.

Wrapping an existing library

Pros
e No reinventing the wheel
e C(Can save a lot of time

Cons
e Limited control over usage, look, etc.
e No API standards

e Possible dependency on other
libraries like jQuery

SYNERGY

Winner: DHTMLx Scheduler

Clean, simple but effective look N

User friendly interaction with drag&drop scheduler
and in-calendar dialogs

Very flexible
Very customizable
Well documented(!)

addEvent

adds a new event

string addEvent(object event);

Cons:
e License for commercial products Parameters
event object the event object
Returns
string the event's id

Building for the future. Better, faster, everywhere. SY N E RGY

Winn

er: DHTMLx Scheduler

Day

08:00

10:00

11:00

14:00

1500

16:00

Week Month Year 20 Aug 2012 — 26 Aug 2012 Today < >

Mon, August 20 Tue, August 21 WWed, August 22 Thu, August 23 Fri, August 24 Sat, August 25 Sun, August 26

Rogers Cup Women's Tennis

Western & Southern Financial Group Masters Tennis

10:00 - 13:00

Palms Casino-the
Pearl

12:00 - 15:00

Sania Barbara
Bowl

15:00 - 18:00
E Center

Building for the future. Better, faster, everywhere. SYN E RGY

Building for the future. Better, faster, everywhere. SYN E RGY 2 O] 7

At the DataFlex side...

e Create a package for our Class

e Extend from a WebApp Framework base class, common ones are
o CWebObiject

o CcWebBaseUIObject
o cWebBaseControl

/ cWébSchedulerDemo.pkg* X |

01 Use cWebBaseControl.pkg

03 Class cWebkbDhxScheduler is a cWebBaseControl

Building for the future. Better, faster, everywhere. SYN E RGY

e Define our JS class name
o This will have to match with the name defined in the]S file later

Class cWebDhxScheduler is a cWebBaseControl
Procedure Construct_Object
Forward Send Construct Object

Set psJSClass to "dfhx.WebDhxScheduler"
End_Procedure

End_Class

Building for the future. Better, faster, everywhere. SY N E RGY

e Configure super classes

Procedure Construct Object
Forward Send Construct_Object

// Configure super classes
Set pbFillHeight to True
Set piColumnSpan to ©

Set pbShowlLabel to False

Set psJSClass to "dfhx.WebDhxScheduler"
End_Procedure

Building for the future. Better, faster, everywhere. SY N E RGY

At the JavaScript side...

e Create a .JS file
e Create a "namespace” object (optional)
e Create our constructor function

o Configure superclasses

// Create namespace object (dfhx = dataflex dhtmlx)
if(!dfhx){

var dfhx = {};
}

dfhx.WebDhxScheduler = function WebDhxScheduler(sName, oPrnt){
// Configure superclasses
dfhx.WebDhxScheduler.base.constructor.apply(this, arguments);

}s

Building for the future. Better, faster, everywhere. SY N E RGY

e Define our class (matches with class defined in DF)

o Extend from a base class, common ones:
e df.WebObject
e df.WebBaseUIObject
e df.WebBaseControl

// Create namespace object (dfhx = dataflex dhtmlx)
if(!dthx){

var dfhx = {};
}

dfhx.WebDhxScheduler = function WebDhxScheduler(sName, oPrnt){
// Configure superclasses
dfhx.WebDhxScheduler.base.constructor.apply(this, arguments);

};

df.defineClass(s s {
// Control functions and logic will go here

})s

Building for the future. Better, faster, everywhere. SY N E RGY

WebProperties

e Can be used to store things like data, status information and settings for the control
e Property value is shared and maintained between Client and Server
e Engine generates default Get & Set functions in JS if no custom ones are defined

o Called when executing WebGet and WebSet functions in DF, and at several
other times

o Implement a custom setter method as set_psPropertyName
o Implement a custom getter method as get_psPropertyName

Building for the future. Better, faster, everywhere. SYN E RGY

WebProperties

e Dataflex definition

// Defines whether events can be dragged or not
{WebProperty = True}
Property Boolean pbAllowEventDrag

e JavaScript definition

dfhx.WebDhxScheduler = function WebDhxScheduler(sName, oPrnt){
dfhx.WebDhxScheduler.base.constructor.apply(this, arguments);

// Define our property
this.prop(df.tBool, » true);

}s

® Our custom setter

set_pbAllowEventDrag : function(bVal){
if(this._eControl){
// DhxNoResize true tells the dHTMLx scheduler to not allow event dragging
// Calling "Set pbAllowEventDrag false" from DF would set DhxNoResize to true, and block event dragging
df.dom.toggleClass(this._eControl, , Ibval);

3

Building for the future. Better, faster, everywhere. SY N E RGY

Displaying your control on screen

OpenHtml, CloseHtml and AfterRender

J e

Building for the future. Better, faster, everywhere. SY N E RGY

Rendering the control

e UI Objects render themselves on the client by generating HTML

e Recursive functions openHtml, closeHtml and afterRender are triggered
o openHtml and closeHtml are used to insert HTML elements into the document
o afterRender is called afterwards to perform DOM Manipulation

T

Object definitions are
sent to the client by |render()

the server e openHtml(aHtml)
e closeHtml(aHtml)
afterRender()

Building for the future. Better, faster, everywhere. SYN E RGY

openHtml, closeHtm|

e Our openHtml and closeHtml functions
o Create a container for our scheduler to fit in using HTML elements

o On initialization we’ll tell the dHTMLx Scheduler to render itself inside this
container

// Creates the HTML elements to "draw" for our control
openHtml : function(aHtml){
// "Forward send"
dfhx.WebDhxScheduler.base.openHtml.call(this, aHtml);

aHtml.push();
aHtml.push();

aHtml.push()

aHtml.push();

aHtml.push()H

aHtml.push()H

aHtml.push()

}s

// Creates the HTML elements to "draw" for our control
// Called after all openHtml functions are done
closeHtml : function(aHtml){
// Just "Forward Send" for now
dfhx.WebDhxScheduler.base.closeHtml.call(this, aHtml);

1

Building for the future. Better, faster, everywhere. SY N E RGY

afterRender

e Our openHtml and closeHtml functions
o Create a container for our scheduler to fit in using HTML elements

o On initialization we’ll tell the dHTMLx Scheduler to render itself inside this
container

// Called after the control has been rendered on screen
afterRender : function(){
// Find our container, mark it as our control root
this._eControl = df.dom.query(this._eElem, ".dhx cal container");

// Forward send
dfhx.WebDhxScheduler.base.afterRender.apply(this, arguments);

// This function sets dHtmlx Scheduler properties and initializes it in our container
this.initScheduler();

// Can only call this setter after control is rendered
this.set_pbAllowEventDrag(this.pbAllowEventDrag);

Building for the future. Better, faster, everywhere. SY N E RGY

= Simple Scheduler

Dashboard Simple Scheduler

Simple Scheduler

Building for the future. Better, faster, everywhere. SYN E RGY

Making it do stuff

ServerActions and ClientActions

J P

Building for the future. Better, faster, everywhere. SY N E RGY

ServerActions

Basically just DF procedures / functions
Can be called by the JS Client by using:
o this.serverAction("MethodName", aParams);
Optionally provide a return value
Must be made available to the client by using
o WebPublishProcedure ProcedureName
o WebPublishFunction FunctionName

Building for the future. Better, faster, everywhere. SYN E RGY

ServerAction to load events

e Our ServerAction, a DataFlex procedure

Procedure LoadEvents String sMode String sStartDate String sEndDate
tWebValueTree tVT
String[] aParams
Date dStart dEnd
// Event Array to be filled and sent to the client
tWebDhxEvent[] aEvents

Move (ConvertFromClient(typeDate, sStartDate)) to dStart
Move (ConvertFromClient(typeDate, sEndDate)) to dEnd

// Event hook, allows augmentation for application specific logic. Fill event array
Send OnLoadEvents (&aEvents) sMode dStart dEnd

// Serialize Event array to a WebValueTree
ValueTreeSerializeParameter aEvents to tVT

// Call clientaction to process data
Move sMode to aParams[0]

Move sStartDate to aParams[1]

Move sEndDate to aParams[2]

Send ClientAction "handleEvents" aParams tVT
End_Procedure

Building for the future. Better, faster, everywhere. SY N E RGY

Event “hook”

e Event “hook” for our ServerAction
o Allows you to define the main universal logic yourself
o Developers can place application specific logic inside the event
o Shows up in Object Properties panel! Properties]

Object: |oWebDhxScheduler] |

Class cWebDhx5Scheduler

Properties Binding Events

¢ OnGetNavigateForwardData ~
¢ Onload

OnloadEvents

¢/ OnMavinateBack =

3 Properties | aig DDO Explorer [VwSimpleScheduler...

// Called by LoadEvents

{ MethodType=Event }

Procedure OnLoadEvents tWebDhxEvent[] ByRef aEvents String sMode Date dStart Date dEnd
// Augment this procedure with your own business logic to load events

End_Procedure

Building for the future. Better, faster, everywhere. SYN E RGY

Exposing and calling our procedure

e Exposing our procedure to the client

Procedure End_Construct_Object
Forward Send End_Construct_Object

// Allows our "ServerAction" to be called from the JS Client
WebPublishProcedure LoadEvents

End_Procedure

e (Calling our procedure from the client

loadData : function(sMode, dStart, dEnd){
// Calls the "LoadEvents" procedure on the server, with given parameters
this.serverAction(> [sMode, this.toSvrDate(dStart), this.toSvrDate(dEnd)], null, function(){
// Logic to be executed if the function / procedure has returned something
3
b

Building for the future. Better, faster, everywhere. SY N E RGY

ClientActions

Functions in JavaScript
Can be called by the DF Server by using
o Send ClientAction "methodName" aParams
o Send ClientAction "methodName" aParams tWebValueTree

e tWebValueTree is data serialized to a format the client and server can both read and
deserialize

Work asynchronously
Parameters are provided as Strings

Building for the future. Better, faster, everywhere. SYN E RGY

Calling our ClientAction

e C(Calling our ClientAction “handleEvents” from the server

// Serialize data
ValueTreeSerializeParameter aEvents to tVT

// Call clientaction to process data
Move sMode to aParams[@]

Move sStartDate to aParams[1]

Move sEndDate to aParams[2]

Send ClientAction "handleEvents" aParams tVT
End_Procedure

Building for the future. Better, faster, everywhere. SY N E RGY

Our ClientAction

e Our ClientAction, a function in JavaScript

// (De)serializers for data sent by and to the server
deserializeVT : df.sys.vt.generateDeserializer([dfhx.tWebDhxEvent]),
serializeVT : df.sys.vt.generateSerializer([dfhx.tWebDhxEvent 1),

// ClientAction called by the server
handleEvents : function(sMode, sStart, sEnd){
// Deserialize received data
var i, aEvents = this.deserializeVT(this._ tActionData);

if(this._oScheduler){
this._oScheduler.clearAll();

// Convert dates

for(i = 0; i < aEvents.length; i++){
akEvents[i].start_date = df.sys.data.stringToDate(aEvents[i].start_date,)
akEvents[i].end_date = df.sys.data.stringToDate(aEvents[i].end_date,);

}

// Pass to scheduler control
this._oScheduler.parse(akEvents,)

Building for the future. Better, faster, everywhere. SY N E RGY

Using your control in multiple projects

J e

Building for the future. Better, faster, everywhere. SY N E RGY

How to import your control

e Develop your control in a separate, standalone workspace
e In your application workspace...
o add the control workspace as a library
o copy the control .JS file to an AppHtml subfolder
o copy any other required files used by the control as well if heeded
o add a reference to the required .]S files in your Index.html
e You can even add it to the class palette for convenience!

<l-- DHTMLX Scheduler -->

<script src="dhtmlx/dhtmlxscheduler.js" type="text/javascript"></script>

<script src="dhtmlx/ext/dhtmlxscheduler_limit.js"></script>

<script src="dhtmlx/ext/dhtmlxscheduler_units.js"></script>

<script src="dhtmlx/ext/dhtmlxscheduler_timeline.js"></script>

<script src="dhtmlx/ext/dhtmlxscheduler_multiselect.js"></script>

<script src="dhtmlx/ext/dhtmlxscheduler_tooltip.js"></script>

<l-- <link rel="stylesheet" href="dhtmlx/dhtmlxscheduler.css" type="text/css"> -->
<link rel="stylesheet" href="dhtmlx/dhtmlxscheduler_flat.css" type="text/css">

<!-- DataFlex Custom Controls (do not remove this line, used for automatic insertion) -->
<script src="Custom/WebDhxScheduler.js"></script>

Building for the future. Better, faster, everywhere. SYN E RGY

Demo:
http://canesto.contentcalendar.eu/
Credentlals

'l,.; f’”ﬁ'

Building for the future. Better, faster, everywhere. SYN E RGY

There’s much more to learn!

e Some things we haven't talked about include...
o Events in-depth

Private client properties

Synchronized WebProperties

Serializing and deserializing data

Etc.

O O O O

e Want some examples? The default WebApp classes are right there!
o Take a look in the AppHtmI/DfEngine of your webapp
o Study controls like the WebButton, WebForm, etc.

Building for the future. Better, faster, everywhere. SYN E RGY

Thank you for your attention
Are there any questions.

AR

Building for the future. Better, faster, everywhere. SY N E RGY

